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ABSTRACT

We describe a series of fixed Froude number numerical simulations of the generation of internal gravity
waves by the flow of stably stratified fluid over an isolated obstacle. Upstream of the obstacle the parallel
flow is shear free and the Brunt-Viisild frequency is independent of height. Under these conditions the
nonhydrostatic model which we employ does not support resonance modes. In this model the nonlinear
lower boundary condition is treated via a general tensor transformation which maps the domain with an
irregular lower boundary into a rectangle. We explore the characteristics of the wave field as a function of
the aspect ratio of the topography and show that there exists a critical aspect ratio which, if exceeded,
results in the generation of internal waves which are subject to a local convective instability. In the long time
limit we compare the numerically determined wave drag, the vertical profile of Reynolds stress and the
downslope wind amplification to the corresponding predictions of linear steady-state theory. In the limit
of small aspect ratio the analytic and numerical results coincide; in particular the Eliassen-Palm theorem
is recovered. In the unstable regime the drag on the obstacle increases drastically, the strength of the
downslope flow is enhanced and the vertical profile of Reynolds stress is strongly divergent. We discuss the
implications of these results to the understanding of certain characteristics of mountain waves in the
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atmosphere.

1. Introduction

The mechanism of internal wave generation by the
flow of stably stratified fluid over an isolated obstacle
is well known. Such motions are commonly known as
“mountain waves” on account of their common atmo-
spheric occurrence, and a considerable theoretical and
experimental effort has been directed toward the
elucidation of their properties. Topographically in-
duced internal waves are also a prevalent feature of
the oceanic interior. Early work on their description
included the contributions of Queney (1941), Lyra
(1943) and Scorer (1949) in which linear theory was
successfully exploited in explanation of various char-
acteristics of the wave spectrum.

Sawyer (1959) was the first to elaborate upon the
relative importance of the surface drag associated with
the freely propagating component of the spectrum com-
pared with the direct frictional drag in high Reynolds
number geophysical flows. In the atmospheric context
his calculations predicted typical surface stresses on the
order of 1-10 dyn c¢cm™? in conjunction with stationary
waves having horizontal wavelengths in the range
10-100 km. This estimate from linear theory was later

1 Present affiliation : National Center for Atmospheric Research,
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2 Alfred P. Sloan Foundation Fellow.

confirmed by Blumen (1965) who extended Sawyer’s
calculation to include three-dimensional and random
effects of topography and vertical variations of mean
flow speed and stability. Bretherton (1969) applied
linear theory in a calculation of the wave drag which
should be produced by a particular air flow over a
specific geographical locality and again obtained a
result in accord with Sawyer’s estimate.

Though highly suggestive of the importance of moun-
tain wave drag in the natural environment, this work
could not be regarded as conclusive since it was en-
tirely founded upon the predictions of linear theory.
Conclusive verification was provided by Lilly (1972)
in the description of a lee wave experiment conducted
over the Rocky Mountains. He reported that “From
aircraft traverses through moderate amplitude waves
in the Front Range we have commonly obtained direct
stress measurements of between 5 and 10 dyn cm~2 in
the troposphere averaged over horizontal distances of
100-200 km.” A detailed analysis of a particular set
of data from this experiment was presented by Lilly
and Kennedy (1973). A common characteristic of these
observations of Reynolds stress in the wave field and
those described elsewhere (e.g., Lilly and Zipser, 1972)
is that although the vertical profile of horizontally
averaged stress is reasonably uniform throughout most
of the troposphere, in the upper troposphere and lower
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stratosphere its magnitude decreases rapidly to zero.
In this region the turbulence intensity is extreme.
Linear steady-state theory makes a very specific
prediction regarding the nature of the vertical Reynolds
stress profile which is embodied in the Eliassen-Palm
theorem (Eliassen and Palm, 1960). If the wave ampli-
tude is sufficiently small then the vertical divergence
of the Reynolds stress is identically zero unless the
mean horizontal flow reverses direction somewhere aloft.
At such a critical level, Booker and Bretherton (1967),
following Miles (1961), have shown that the wave
amplitude is reduced by the factor :

exp[ — 27 (Ri—H1],

where Ri is the gradient Richardson number at the
critical level and Ri>0.25 is assumed. For Ri>>O(1)
there is no significant reflection, and the momentum flux
is thus entirely absorbed. The mean flow at this level
is then subject to the full wave drag and will be de-
celerated by it. Breeding (1971) has simulated the
ensuing nonlinear interaction and shown that the
critical level migrates downward in response to the
wave drag for horizontally periodic plane wave forcing
from below.

If, on the other hand, Ri<0.25 at the critical level
then not only is the flow dynamically unstable to the
- growth of Kelvin-Helmholtz waves (Miles, 1961;

Howard, 1961), but any internal wave incident upon
the critical level from below will be overreflected (Jones,
1968 ; Davis and Peltier, 1976; Acheson, 1976) and will
thus amplify in time. Although both of these inter-
actions lead to a vertical divergence of momentum flux,
they both require the existence of a critical level. Such
a level was not present in the observations reported by
Lilly and Kennedy (1973) and thus the stress diver-
gence associated with the standing wave structure is not
explicable in linear theory.

Here we shall restrict our attention to those aspects
of the mountain wave problem which are intrinsically
dependent upon its nonlinearity. Such effects enter in
two related ways, even when the turbulent boundary
layer is excluded from consideration and a free-slip
condition is applied at the surface. These nonlinearities

_aré associated with 1) the lower boundary condition
(e.g., the finite aspect ratio of the topography) and 2)
the nonlinearity of the hydrodynamic equations them-
selves. Under restricted circumstances a limited amount
of progress has been made in understanding these effects
through the application of analytic methods (Miles,
1969; Long, 1972) but in general the problem 1is
analytically intractable.

In Sections 2 to 5 we describe a finite-difference
numerical model which has been designed explicitly to
treat the fully nonlinear transient mountain wave
problem. This model is based upon the anelastic form
of the full Navier-Stokes equations and as such is a
mode! from which sound waves have been filtered. It
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has the following additional characteristics:

1) The physical domain with the irregular lower
boundary is mapped info a parallelopiped (a rectangle
for the two dimensional simulations described here) by
a tensor transformation of the independent variables
(%,2) = (Z,7).

2) The conservative form is preserved by referring
the dependent variables to the original Cartesian
coordinates. _

3) Effective numerical schemes are employed to
simulate the Sommerfeld condition at lateral and over-
head boundaries of the domain. These schemes effec-
tively eliminate reflections.

In Section 6 we present a brief review of linear theory
and apply it to calculate the steady-state wave field
launched and maintained by a bell-shaped obstacle in
a shear free flow which has constant Brunt-Viisild
frequency. This calculation is for a Froude number
(ratio of launching. frequency to Brunt-Viisild fre-
quency) such that the disturbance is freely propagating
in the vertical. In Section 7 we employ the numerical
model to analyze the transient development of the wave
field and the approach to steady state as a function of
the aspect (height/width) ratio of the obstacle. We
compare these results in the long time limit to the
predictions of linear steady-state theory and show that
for small aspect ratios they are almost identical. For
aspect ratios exceeding a critical value we show that
the flow becomes unsteady and derive a linear stability
criterion which explains the onset of unsteady be-
havior in terms of a convective instability of the wave
field. The implications of our results to the geophysical
observations described previously are discussed in
Section 8.

2. The mathematical model

The model which we employ is based upon that de-
scribed in numerical detail by Clark (1977) although it
required some mddification to obtain the results pre-
sented in Section 7. Its analytic structure is embodied
in the anelastic form of the equations of motion,
continuity and the first law of thermodynamics,
respectively, as

da
p—=—Vp'+V-et/'8, 1)
dt
V- (pu)=0, (2)
ae
ﬁ——‘:V'H, (3)
dt

where 1 is the stress tensor, H the heat flux vector and ¢
the potential temperature to be defined below. In
(1)-(3) the thermodynamic variables ¥ = (p,p,T,8) have
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been separated into two components as
¥="V(z)+¢'(x4), 4)

where the overbar denotes a background state which
is in hydrostatic equilibrium and where p, p, T, 6 are,
respectively, the density, pressure, temperature and
potential temperature of an ideal gas. Batchelor (1954)
has shown that all wave frequencies above the Brunt-
Viisild frequency IV, where

g do
Ne=-—, s)
6 dz
are filtered when the local time rate of change of density
is taken to vanish in the continuity equation. The above
system is similar to that obtained in the Boussinesq
limit since variations of density from the background
profile are ignored except where they multiply the
gravitational acceleration. In the simulations completed
to date we have employed the so-called ‘“‘deep equa-
tions” of Ogura and Philips (1962) since this system
is exactly closed energetically. To obtain this closure
it is necessary to assume that the background state is
isentropic and this leads to the following expressions
for the fields ¥:

B(z) =0, (6a)
T(2)=00(1—3/H,) (6b)
p(a)=po(1—z/Hy)!* (6c)
p(2)=po(1—~2/H ) = (Rabo)™". (6d)

Since (6a) implies N?=0 from (5) the model must be
initialized at /=0 with 6’=6'(z) in order that the
medium be capable of supporting internal waves. In
(6) pois the pressure at 2=0, k = Ry/c, and H.(=c,00/g)
is the isentropic scale height; Ry is the gas constant for
dry air and ¢, the specific heat capacity at constant
pressure. In deriving (6) use has been made of the ideal
gas equation of state

p=pRuT, (7
the definition of potential temperature
0=T(p/po)™", (8)
and the condition for hydrostatic balance
g= —pg- 9

A linearization of (7) and (8) leads to the result
B, P,
pl = _ﬁ__—+~—’

(10)
8 ¢

where 2=vyR,T is the square of the adiabatic sound
speed (y=C,/C,). As stated previously, the advantage
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of expansion about the state defined by (6) is that the
resulting system (1)-(3) has a simple energy closure
against which the numerical code may be easily checked.
Such consistency experiments are described in detail
in Clark (1977).

In (1) the symmetric stress tensor 7, is connected to
the deformation tensor D;; through the momentum
diffusivity K. (effective kinematic viscosity) such that

1ij= pKuDyj, (11)

8:j
D= 3u:i+ 0:u;—2—V -u.

i

(12)

We are obliged to allow for spatial and temporal varia-
tions of K, in (11) for two reasons. The first of these is
purely numerical. In order to suppress reflections.from
the upper lid of the domain and from the upstream
boundary we have found it necessary to absorb the
incident waves viscously. There is thus a requirement
for high effective viscosity in these regions. Second, the
geophysical flows in which we are interested have ex-
tremely high Reynolds number (3>10%) and we require
some way of accounting for the subgrid (unresolved)
scale motions which may be engendered by instability
of the resolved scales. We have tested the following

formulations of the first-order closure schemes suggested
by Lilly (1962):

K= (kA?| Def|, (13a)
Kn=(kA)|Def| (1—RD)}, Ri<1t,  (13b)
where ( )
d 1nf/d
I ihucd (130
(Def)?
(Def)2=%(Df1+ D32)+Die. (13d)

Here and in what follows subscript 2 refers to the
vertical coordinate. In (13) A is the grid resolution
[A= (Ax-A2)* in two dimensions] and £ is a numerical
constant. For three-dimensional simulations, Lilly
(1967) found that k=0.21 was consistent with the
Kolmogoroff turbulence spectrum, and Deardorff (1971)
showed that use of the form (13a) with Ky/Kn=1/Pr
=3 (Pr=Prandtl number) and k=0.21 was effective
numerically in preventing spurious accumulation of
energy at the 2A wavelength.

For all of the calculations to be described (13b) was
assumed. In most cases this led to K,,=0 since Ri was
everywhere greater than unity in the domain interior.
Physically this assumption implies an instantaneous
equilibration of the turbulence intensity with the large-
scale flow in which it is embedded, an assumption which
is not, in general, justifiable.

In (3) the heat flux vector H has components

a8
H;=pKy—,

(14)
axi
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and we shall always assume Ky=K,, locally so that
Pr=1. Egs. (1)-(3) and (10)—(14) complete the set of
equations to be employed here.

An important analytic property of the system (1)-
(3) is that the dependent variables u;, ', p’ are not
completely independent. The perturbation pressure

, field ', in particular, must be such that the velocity
field computed from (1) satisfies the anelastic continuity
equation (2) (Batchelor, 1954). The net result is that
#’ can no longer be determined from the equation of
state (7) but rather must satisfy an elliptic partial
differential equation which can be deduced by taking
the divergence of (1) and applying (2). This equation is

(puite;) ji=~ (8i;p") jit Buap’g) it i35,  (15)

where ( ),;=98( )/dx;. It is the necessity of solving this
equation at each time step to update the pressure field
which makes the anelastic system. more difficult to
work with numerically than the set of equations which
obtain in the hydrostatic limit. In the next section
these dynamical equations are transformed to a new
coordinate system which depends upon the topography
at the lower boundary.

3. Transformation of coordinates

In the two-dimensional version of the anelastic model
employed here each of the four spatial boundaries of
the domain require separate treatment. The lower
boundary is particularly important in the mountain
wave problem and we deal with it by transforming the

hydrodynamic equations from (x,3) to (£,2) coordinates '

where

fl

T=x

[z—2,(x)] .
H——

[H—2:(x)]
This transformation has been employed previously by
Gal-Chen and Somerville (1975a,b) who used it in a

discussion of convection in air above a heated irregular
boundary. The transformation (16) maps the domain

(16)

0<x<D
) } ()

2s(x) <2< H

into a rectangle. It becomes the identity transformation
when the topography z,(x) vanishes and regardless of
topography becomes the identity transformation at
the top of the domain z=H. Furthermore, (16) is a
1:1 mapping between the old coordinates and the new
since the Jacobian of the transformation

\VG= l—zsl(x) JH (18)

is always nonzero. The conjugate of the metric tensor
G for the transformation (16) is the tensor G™*, and
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in the case of two spatial dimensions
9z, Z—H
) ()
0x \H —z,(x
Grn= @ :
azs< Z—H ) <azs tE—H\? H \?
—}) |\ +
0x \H —z,(x) ox ) <H——zs) (H—z)
(19)

If ¢ is an arbitrary field variable in the set of govern-
ing partial differential equations (1)-(3) then these
equations may be transformed to the (%) domain
through application of the following expressions which
obtain directly from the chain rule for partial deriva-
tives:

_0¢ J J

VG—| =—(G¢)| +—(NGG2p),  (20a)
ox z 9x 3 0z
_d¢ do

VG—=—, (20b)
dz 02

The complete transformation also requires the defini-
tion of fluid velocity normal to surfaces of constant Z
which we denote by w, where

dz
== (w-+NG Gu)/NG. 1)
t
In (21) # and w are, respectively, the x and z Cartesian
components of fluid velocity. The analytic forms of the
transformed equations are obtained by direct applica-
tion of (20) and (21) to (1)-(3). They are as follows,
respectively, for « and z momentum, continuity and
the first law of thermodynamics:

a
5;(5\/6?’%) + V- (Wu)

3 o _
= ——(Gp)——(NGG"p')
Jx 0z

d d :
+—(Gr11)+—(VG GPrytry), (22a)
dx 0z
0 _ .
gt-(ﬁx/GwHV (Tw)
3 N
= “‘j(?l) —gp’\/@l———(\/Gm)
d% ox
a -
4+ —(VG G2rypt72). (22b)
9z
v-(w)=0, (22¢)
o
—(@EVGO)+ v - (¥6)
al
a 9
=—(VGH)+—(NG G2H,+Hy), (22d)
dx -0Z



NOVEMBER 1977 T. L.

where the definition

W= pVGui+pVGuk (23)
has been employed. Transformed versions of the elliptic
equation for p’ [Eq. (15)] and of the defining equa-
tion for w [Eq. (21)] can be constructed similarly.
The approach which we have taken in constructing the
transformed equations (22) is to effect the transforma-
tion upon the independent variables only. It is this
restriction upon the transformation which makes it
possible to preserve the conservative form for the non-
linear advection terms [e.g., the term V-(W'x) in
Eq. (22a)]. Lapidus (1967) discusses this point in
some generality. This is contrary to the approach in
Gal-Chen and Somerville (1975a,b). When the depen-
dent variables are referred to the new coordinate system
the transformation of the nonlinear advection terms
generates Christoffel symbols of the second kind and
since these have no low-order, conservative, finite-
difference analogs the energy and momentum budgets
of the numerical model are not closed to machine
accuracy. In a numerical simulation of wave propaga-
tion phenomena it seems judicious to avoid artificial
source-sink terms in the algorithm which may con-
ceivably affect the wave energy and momentum.

4, Numerical formulation of the model equations

A detailed description of the finite-difference repre-
sentations of Eq. (22) is given in Clark (1977), al-
though the analytic forms do not appear there. Only
an abbreviated description of the numerical methods
will be given here.

The model employs the spatially staggered grid
described by Harlow and Welch (1965) for representa-
tion of the hydrodynamic fields. Vector components are
specified as normal to the grid-box surfaces and all
scalars are located at the grid-box center. Quadratically
conservative spatial differencing is employed in the
numerical formulation of the advective terms in the
momentum and internal energy equations where a
second-order conservative scheme of Arakawa (1966)
is used. These forms conserve momentum to round off
error under all conditions and conserve kinetic energy
under appropriate conditions.

The pressure and diffusion terms are represented as
second-order finite differences. Centered time- and
forward time-differencing are applied, respectively, in
the representation of advection and mixing. For the
specific simulations described in later sections, the
spatial sampling intervals are Ax=600 m and Az= 200
m; a time step At=20 s is employed, consistent with
the Courant-Friedrichs-Lewy criterion for linear sta-
bility. The second-order time-differencing scheme for
the advective terms requires a start-up procedure. We
employ two forward time steps, each of length A#/2;
the first step is unstable-forward and the second Euler-
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F16. 1. Domain for the time-dependent nonlinear simulations.
The hatched region denotes the volume in which dissipation is
artificially enhanced to prevent reflection. Roman numerals I-IV
correspond to the four domain boundaries referred to in the text.

backward, the net effect being an extremely slight
amplification. To prevent time splitting the integra-
tions are restarted every 20 Az. The computational do-
main is 120 Ax-40 Az in size and since the boundary
conditions are all treated explicitly, the array size for
each hydrodynamic field is (Vx,Nz)= (122, 42).

The fnite-difference analog to the transformed ver-
sion of the pressure equation (15) is solved by applying
Ogura’s (1969) dimension reduction method (DRM)
to transform the elliptic pressure equation to a set of
decoupled horizontal Helmholtz equations. The details
of this procedure are described in Clark (1977). Trunca-
tion errors in the pressure forcing terms in regions of
sloping topography result in the introduction of a
numerical source-sink due to a slight imbalance be-
tween the terms which convert horizontal kinetic
energy to vertical kinetic energy. This numerical effect
was found to be of the same order or smaller than the
nonlinear advection kinetic energy source terms.
Typically, less than 19, of the kinetic energy produc-
tion is associated with it.

5. Boundary conditions for the numerical

integrations

A schematic illustration of the domain is shown in
Fig. 1 with the boundaries numbered I-IV, We dis-
cuss the horizontal boundaries II and IV (2=0,H)
first and employ Schuman operators (Schuman, 1962)
to represent the conditions compactly. We have

w=0, 2=0,H, (24a)
L=~0, 2=0,H, (24b)
prow=0, =0, H. (24¢)

An approximafion to free-slip boundary conditions was
employed on 2=0,H. In (24b), L is the vorticity, and
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a term involving the vertical derivative of wG* was’

ignored so as to avoid the necessity of making the
application of the free-slip boundary condition im-
plicit. This was found to be a good approximation and

" the solutions presented in this paper were in fact com-
pletely insensitive to the detail of the boundary con-
dition (24b). When K,,=0 near the lower boundary,
as it is in all of the simulations we shall discuss, condi-
tion (24b) is in fact redundant. Eq. (24c) is the con-
straint required to ensure that the vertical integral of
the vertical momentum advection be identically zero,
le., that the domain not leak momentum through the
upper and lower boundaries. The conditions on 7,; and
H; on 2=0,H are

—_—

Til = T2 =Tl2=0,

—_—2

2=0, H, (25a)

H =H,=0, 3=0,H. (25b)
The second of the thermal boundary conditions (25b)
is rigorously nonconducting on 2Z=0,H. We have

altered it slightly on Z=H to the form

@K
Hg= 52<0/>,
G

i=H, (25¢)

where (8’) is the horizontal average of 8. This is done
to suppress cooling in the upper regions of the model
where K,, (and thus Ky=K,,) is made artificially large
in order to prevent the downward reflection of upward
propagating internal waves generated by the mountain.
" As mentioned above, K,, is artificially enhanced in
the upper levels of the model to inhibit reflection. This
region is shown hatched in Fig. 1. The thickness of this
region has been taken to be on the order of one vertical
wavelength - (H—D=)\,) and the diffusivity within it
to increase sinusoidally from zero at 2= D to a maximum
at 2= H. Thus, explicitly

(2—D)
K, K,,,'l cos[
2 (H-D)

The constant K9, was chosen such that the amplitude
of a plane internal wave with vertical wavelength A,
would be reduced by ~959%, in the process of travers-
ing the viscous layer. This method of preventing
reflection was found to be extremely effective although
it wasted a large fraction (~0.25) of the full domain
height. In particular it seems to be a better method of
suppressing reflection than the “Rayleigh friction”
formulation (a linear drag law) employed in Clark
(1977). The effect of the viscous layer as a wave ab-
sorber is seen clearly in the vertical profiles of Reynolds
stress to be described in Section 7.

The conditions at the lateral boundaries of inflow
and outflow (I and III, respectively, in Fig. 1) are

Il pes<an eo
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chosen in accord with the linear lee wave problem de-
scribed in the next section. At the inflow boundary,
free slip conditions are employed on the dynamic
variables such that

8,0'=8xw=0, X=X7
u=1uy(z), r=2xy, (27
[u—uo(z)]x=;’x=0, x=2%1

where x=1x; is the location of the lateral inflow bound-
ary. In addition a Newmann-type boundary condition
for the pressure perturbation p’ is derived to satisfy
the constraint

(28)

These conditions at the inflow boundary assume, in
effect, that the upstream disturbance vanishes and
x=x1 is taken sufficiently far upstream that this
assumption is justifiable. That this assumption is
rigorously valid in the linear limit is well known. The
remaining variables have zero horizontal gradient at
x=qx3 for all Z. It was found that keeping 8'=6'(z), the
profile at t=0, was numerically unstable when the
static stability was strong.

A viscous absorbing region of width 20 Ax was also
employed at the inflow boundary to absorb upstream
propagating transients as well as any weak upstream
steady-state disturbance produced by blocking at the
mountain. It is assumed that this viscous region will
effectively make the inflow boundary appear, in a
numerical sense, to be infinitely distant from the
mountain to the nonlinear, upstream propagating fea-
tures of the flow. The form employed for K, at the
inflow boundary was similar to (26) and the same value
of K% was assumed.

At the outflow boundary (IIT in Flg 1) we employ
an extrapolation scheme which approximates to the
Sommerfeld condition and is similar to one recently
described by Orlanski (1976). The necessity of this
derives from the fact that during initialization of the
model, even if the mean flow is accelerated smoothly
from rest to its steady upstream amplitude, there are
significant transients generated. When these transients
strike the downstream boundary they will, unless
special care is taken, be reflected back into the domain
interior and severely contaminate the integration.

The inflow-outflow boundary conditions just de-
scribed were critical to the success of the numerical
simulations. The dynamical effects which concern us
demand for their proper representation a model with
aperiodic lateral boundary conditions. When wave-
mean flow interaction occurs the net effect is an ir-
reversible modification of the inflow momentum profile,
an effect which the use of periodic boundary conditions
excludes. In the next section we obtain a simple linear
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steady-state solution against which the performance of
the numerical model will be calibrated.

6. A linear steady-state solution: Uniform wind
and stability

Here we present briefly an analytic solution to the
linear, inviscid, steady-state form of the governing
equations (1)-(3). We will not describe its derivation
in detail since the methods of linear theory are well
known. It will be employed subsequently to verify in
detail the validity of the numerical model in the steady
state when the wave amplitude is small and, further-
more, will be restricted to the solutions for uniform flow
over a bell-shaped mountain when the background
atmosphere has constant Brunt-Viisild frequency. The
two-dimensional topography is represented as

a*h
z.(x)= (29
x2 + aZ
which has the simple spectral representation
Zy(k)=mahe ¥, (30)

where £ is the horizontal wavenumber, and a is the half-
width of the obstacle at half its maximum height 4.
If w(x,) is the vertical perturbation velocity we may
represent it in terms of the steady-state free-stream
deflection £(x,2) such that

23
w= U()—.
ox

(1)

The linear steady-state solution satisfying the radiation
condition as z—c and the linear boundary condition

025
W=Wo= Uo—‘—,
ox

z=0, (32)

has the form (Lyra, 1943)
£(w,z)=7"" exp(z/2H)

X / expilkx+ (ke — k2 JZ,(R)dk, (33)
C

with
VY US) —(t/e)

[1—(Ue/cH) ]
2'=[1—(Us*/ct) ]k,

where C is the contour 0<%2<  along the real axis in
the complex k-plane and where w, is the acoustic cutoff
frequency (wa.=g/2c). In the limit of low Mach number
(M=U,/¢K1) the solution (33) is exactly compatible
with the first-order perturbation equations deduced
from (1)-(3). In (33) H is the isothermal scale height.

, (34a)

(34b)
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8

2(km)
B

z{km)
D

F1c. 2a. Contours of constant (steady state) free stream de-
flection £(x,z) based upon linear inviscid theory. (Dashed line=
negative £; solid line=positive §). Parameters 2x/N=10.2 min,
Up=4ms™, ¢=3 km, #=100 m.

Fic. 2b. Contours of constant (steady state) vertical velocity
w(x,2) deduced from £(x,2) in (a), where w= U,d¢/dx. (Dashed
line=negative w; solid line=positive w).

With M«1
k= N*/Uq?
. (35)
7=z

With Z,(k) as in (30) it is straightforward to obtain
Re(£) corresponding to the physical disturbance in
terms of simple real integrals. These representations,
valid, respectively, in the downstream (x>0) and the
upstream (x<0) regions, are

(x>0):
/2
Re(§)= ahez’w[ke/ dB-cosB-exp(—ake singB)
0

o

Xcos[r cos(ﬁ—w):H—kG/ d¥ -exp(—oke cosh¥

0

—cosw cosh¥) -sinh ¥ - cos (7 sinw cosh\Il)] (36a)
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(x<0):

Re(t) = ahes™(—1/x) / D
0

—a\ AT
Xsin[———+<kg2+——) z:l
x x?

ker=rsinw |

where

kgz=1r cosw
k=Fkgsing

(36b)

provide the definitions of w and 8 in (36a).

The field Re(£) deduced by Gaussian quadrature on
the integrals (36) and with the parameters ¢=3 km,
U=4 m s, 2r/N=10.2 min is shown in Fig. 2a.
The corresponding w field is determined from (31)
using centered finite differences and is shown in Fig.
2b. It is clear from (36) that the amplitude of the
vertical velocity field scales linearly with the mountain
height 4. The single nondimensional parameter in this
simple linear mountain wave problem is thus the
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Froude number Fr, which we shall define as
(2x/N)
r= —, 37
(2a/Uv) .

. the ratio of the Brunt-Viisild period to the launching

period of the internal waves. So long as Fr<O(1) the
fluid response to the forcing from below consists of a
freely propagating internal wave field as in Fig. 2. For
Fr>>1 the response is entirely evanescent and the
disturbance is trapped in the region of forcing. With the
parameters U, ¢ and N as above Fr=0.408.

Associated with the wave field (36) there is a drag
on the air near the surface and a related force on the
earth which we may calculate from the linear steady
state form of the horizontal momentum balance
equation [ (1) with K,,=0]. This is just

~+o0 ‘ -+ ap .
D, (0)y=—py / wwdr=— / zs(x)a——dx (38)
C0x

—» —0

which is the negative of the Reynolds stress integrated
over the surface z=0. The Eliassen-Palm theorem
(Eliassen and Palm, 1960) assures us furthermore under

o4

2(km)

6

Z({km}
S

Y

9 8 27

x{km}

Fic. 3. Temporal evolution of the vertical velocity field from the nonlinear model with 2x/N=10.2 min, Up=4 m s7}, ¢=3 km,
k=100 m. The individual plates correspond to the times (a)=240 Af, (b)=280 A, (c)=320 A¢, (d)=360 A, (e)=1020 At (steady
state). Plate (e) should be compared with Fig. 2b. The time step At = 20 s.
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the present circumstances (no wind reversal aloft) that

) oo
——(p@ j u’w’dx) =0;
dz —

thus the mean flow above the surface will never feel the
wave drag so long as the wave amplitude is small. From
(38), (36) and (31) we may obtain a closed form ex-
pression for D, (0) in (38) as

(39)

kg

D(0) = porah2U* / dke2kh (b2 —k2)h. (40)

0

It is clear from (40) that only the freely propagating
part of the wave spectrum contributes to the surface
drag.

In the finite-amplitude regime we may expect the
linear solution (36) to become increasingly invalid as
the aspect ratio of the topography A =7%/a increases
keeping the Froude number fixed. We expect two effects
to be important: (i) on the assumption of no upstream
influence the vertical profile of Reynolds stress should
become increasingly divergent near the ground to
account for the effect of the nonlinear lower boundary
condition; and (ii) the linear solution should become
unstable convectively for 4 sufficiently large that the
vertical gradients of perturbation potential tempera-
ture are sufficiently large and negative (in alternate
vertical phases of the wave) that the background
stability is erased. In the following section we shall
compare the predictions (36), (39) and (40) of linear
steady-state theory to the nonlinear time-dependent
simulations using the model described in Sections 2-5
and will in particular focus upon the demonstration of
hypotheses (i) and (ii) above.

7. Finite-amplitude time-dependent solutions

a. The small aspect ratio limit

We describe the nonlinear transient evolution of the
wave field at Froude number Fr=0.408 as in the last

\
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section. The magnitude of the Brunt-Viisdli period
2r/N corresponds to a vertical gradient of potential
temperature dfy/dz=3°C km™ in accord with the ob-
served mean stability of the troposphere. In order to
reduce the amplitude of transients generated during
the initialization of the numerical integrations the
mean flow is accelerated linearly from rest to its steady
value Ugp=4 m s~! over a time ¢, which is such that
t,>0(2x/N). This procedure does not eliminate such
transients but it does severely attenuate their
amplitudes.

The number of grid points in the domain is kept
fixed at Nx-Nz=122X42 and the grid spacing em-
ployed is Ax=600 m, Az=200 m. The domain is thus
8 km high and 72 km long. From Fig. 2 we see that this
resolution is sufficient to give approximately 12 grid
points per wavelength in the vertical. Increased
resolution does not affect the numerical results at the
3%, level. The mountain profile is again given by (29)
but the topographic maximum is offset in the domain
by a distance equivalent to 30 horizontal grid intervals
in the downstream direction. This offset was included
to maximize the distance of the obstacle from the inflow
boundary and thus to reduce the tendency at this
boundary toward the formation of a spurious upstream
disturbance. The first 20 intervals are for viscous
absorption as discussed previously. X

In Fig. 3 we show a series of time slices through the
evolving two-dimensional vertical velocity field forced
by a mountain with 2= 100 m so that 4 =1/30. In the
long time limit as the field approaches its steady-state
expression this solution may be compared visually to
the linear result in Fig. 2. The vertical wavelength
A.=2w/k, of the disturbance agrees to within a few
percent with the linear result. From the Boussinesq
form of the plane wave dispersion relation for the

T T T T T T T T
| ek s << -
o
‘v
2 2f 4
o~
‘e
=
E
=3
T b
o e A A A 2 1 1. L
(o] 400 800 1200 1600
n(At)

F16. 4. Temporal evolution of the surface drag (force on the
earth per unit area per unit length). The dashed line is the result

from linear steady state theory. Parameters are the same as in
Fig. 3.
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<Puw'>x |dz(kg o)

Fic. 5. Temporal evolution of the Reynolds stress pu'w’ as a
function of height z. The time is in units of A/=20 s. Note that in
the long time limit the Reynolds stress in the interior becomes
nondivergent in accordance with the prediction of the Eliassen-
Palm theorem.

steady disturbance,

N2
' B=——p2, (41)
U‘Z

Since N?/UZ>k?, the wave is almost hydrostatic with
B~ N/U (42)

and thus \,=2.45 km as in Figs. 2 and 3.

A more stringent test of the validity of linear theory
in the small aspect ratio limit concerns the second-
order results (38), (39) and (40). In Fig. 4 we compare
the temporal evolution of the surface drag to that
predicted by the linear theory (40). The surface drag
overshoots the linear prediction following the 200 Az
start-up period after which it settles smoothly upon the
analytic result and oscillates with very small amplitude
about it. The overshoot is produced by transients
generated in initialization. Without the smooth starting
procedure the overshoot and the ensuing oscillations
have larger amplitude. The smooth start-up procedure
was in fact designed to eliminate these effects.

In Fig. 5 we show the temporal evolution of the verti-
cal profile of Reynolds stress [ the negative of the first

Integral-in (38) as a function of height]. Far from the-

boundary and in the long time limit the stress profile
becomes nondivergent as predicted by the Eliassen-
Palm theorem (39). There are, however, two regions of
divergence in the profile adjacent to the upper and lower
domain boundaries. The first of these, near the upper
boundary, is a necessary artifact of the presence of the
viscous absorption region described by Eq. (26). The
slight divergence of the stress profile in the low levels
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is due to the nonlinearity of the lower boundary condi-
tion (i.e., w=0 on Z=0 rather than w= U¢z,/dx on
2=0). The sense of this divergence is such that counter-
flow momentum is absorbed. If (pu'w’) is extrapolated
down to z=0 through the region of divergence then
—{pu'w’)=D,. This is convincing evidence that the
surface divergence is “real.”

In the next section a further effect of this nonlinearity
at the lower boundary will be described when we plot
the temporal evolution of the perturbation velocity
tangential to the surface as a function of horizontal
position through the nondimensional “down-slope wind
amplification factor” which we define as

Ur—Us
Uo ‘

(43)

As we shall see from this function the maximum
tangential wind speed is obtained just to the lee of the
mountain crest. Furthermore, we shall show that in the
long time limit the factor (43) is larger than zero at the
downstream boundary so the outflow at the surface is
accelerated, i.e., counterflow momentum is extracted
irreversibly from the low levels.

Comparing Figs. 4 and 5 we note that accompanying
these nonlinear effects at the lower boundary there is
now a mismatch between the magnitude of the surface
stress and the uniform Reynolds stress in the interior
in the long time limit. The effect is such that the wave
momentum flux in the upper levels is smaller than
would be predicted on the basis of linear theory which
demands equality between these two quantities. The
amount of the reduction is ~209, for 4=1/30. This
effect is entirely due to the nonlinearity of the lower
boundary condition which even for 4 =1/30 is sufficient

6

8 27

F16. 6. Steady-state potential temperature perturbation 6" (x,2)
[where 0=6+6", 0" (x,3)=0(x,2)—{¢'), and (#’) denotes the
z-dependent horizontal average of ¢’]. The time is 1020 Az cor-
responding to the ‘vertical velocity field in Fig. 3e. Compare with
Fig. 2a for the linear £(x,z) field and note the validity of the
proportionality 6" (x,z) = — (d{(6)/dz)£(x,2) predicted by linear
theory.
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to affect the second-order characteristics of the wave
system. With the exception of this physically explicable
effect we feel justified in claiming that for 4 sufficiently
small the numerical model agrees extremely well with
the predictions of linear theory in the steady-state,
long time limit.

b. Aspect ratio dependence of bow evolution and stability

Fig. 6 illustrates the steady form of the perturbation
potential temperature field in the case 4=1/30 de-
scribed in Section 7a. The phase characteristics of this
field clearly mimic those shown previously (Fig. 2a) for
the free stream deflection. The first half-vertical wave-
length corresponds to the increase in § which is forced
by the descent of fluid in the lee of the mountain. This
is a purely adiabatic effect since Ky =0 in these simula-
tions (away from the upper boundary). Similarly the
second half-vertical wavelength has an associated 6
perturbation which is negative corresponding to the
cooling upon adiabatic ascent in the second half-
vertical wavelength of the w field. Clearly, since ¢ and
thus w scales as /% there will exist a critical aspect ratio
4, above which the vertical gradient of § will become
locally superadiabatic and the wave will become con-
vectively unstable. In terms of the temporal evolution
of the wave system this instability will always exist
regardless of 4 on account of the height growth factor
exp(z/2H) in (36). Of dominant concern in the geo-
physical problem is the value of 4 =4, at which this
instability is triggered in the first vertical wavelength.

We may employ the linear solution (36) to construct
an a posteriori stability criterion for the determination
of A, and thus %, with a held fixed. The linearized form
of the steady-state version of (3) is just (where sub-
script O refers to the basic state of linear theory)

a0’ dby
U0~—+w——= 0.
ox dz

(44)

Since, in the steady state, we may define w in terms of

the free-stream deflection £ by (31), Eq. (44) is thus

equivalent to

90" 9t dby
— —=0. (45)

ox 0x dz

Under the assumption of no upstream influence (45)
integrates directly to give

—db,
0’ (x,2) = £(x,2). (46)
dz
The a posteriori stability condition is thus
— ot/ dbos ot db,
). @
02 /max 02 \0Z/ max G2
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F1c. 7. Stability diagram based upon the a posteriori condition
deduced from linear theory. For (9£/02z)max>1 the wave is
convectively unstable.

if df,/dz is approximately constant as in the present
model. This condition, which expresses the physical
requirement that the fluctuation potential temperature
gradient be just sufficient to offset the background
stability, can be written more simply as

o¢
) >t
02/ max

In Fig. 7 we plot (84/92)max as a function of %z and
note that condition (48) is satisfied for the first vertical
wavelength of the wave system for 22400 m, i.e., for
an aspect ratio 4,=2/15. We proceed to test this
prediction with the nonlinear model and to investigate
the flow characteristics in the unstable regime.

In Fig. 8 we compare the wave drag on the surface
with the linear prediction for £=200, 300 and 400 m.
In the first two cases, although the overshoot of the
wave drag following start-up is still apparent, at the
end of the integration period its magnitude is decreas-
ing slowly toward an asymptote which is close to the
linear prediction although somewhat in excess of it.
For 2=400 m the wave drag continues to increase
following the initialization phase and in the later stages
begins to oscillate with a magnituade which is approxi-
mately 1009, in excess of the linear prediction. We
associate this increased surface drag with an increased
pressure drop across the topography which is induced
by the onset of convective instability in the wave.

Fig. 9 shows the temporal evolution of the vertical
Reynolds stress profile for £=200, 300, 400 m. The
divergence of the stress profile in low levels is still ap-
parent, as is the decrease in launching efficiency
associated with the nonlinear lower boundary condi-
tion. For 2<<400 m, however, in the domain interior the
Reynolds stress profile remains nondivergent in the
long time limit and thus so long as the wave field is

(48)
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Fi1c. 8. Temporal development of the surface wave drag for (a) #=200 m, (b) =300 m, (c) #=400 m. Note the large increase
in drag in the unstable regime (excess of the linear prediction) for #=400 m. Dashed line is the linear result.

convectively stable the Eliassen-Palm theorem con-
tinues to hold. For #=400 m a marked divergence of
the stress profile accompanies the increased surface drag,
implying a strong wave-mean flow interaction away
from the lower boundary. In Table 1 we compare the
asymptotic Reynolds stress in the interior to the surface
drag and note that the mismatch is ~209, for £<400 m.

The temporal evolution of the downslope wind ampli-
fication is shown for the three values of # in Fig. 10.
Again the acceleration above the inflow speed at the out-
flow boundary is noted. For Z=400 m there is a con-

4

tinuous increase in the maximum tangential wind speed
at the surface following initialization, which is in accord
with the increased pressure drop across the topography
induced by the onset of convective instability and the
increased surface drag.

In Fig. 11 we illustrate the temporal evolution of
the vertical velocity field for Z=400 m and note the
marked splitting of the phase structure which is pro-
duced by the instability. The intensity of the wave-
induced convection was inhibited in this simulation
through the use of the first-order closure scheme (12b)
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F16. 9. Reynolds stress profile as a function of time for (a) #=200 m, (b) =300 m, (c) £=400 m.
Note the strong divergence in the interior in the unstable regime for =400 m.
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for the momentum diffusivity. This control on the
strength of the convective circulation embedded in the
wave acts such as to minimize the effects of the
instability previously enumerated. The temporal evolu-
tion of K, is illustrated in Fig. 12 where we plot Kjn**(¢).
The maximum value of K, occurs at a height \,/2
above the surface which is just the location cited pre-
viously as that at which the convective instability

" should first appear; K. remains zero everywhere sur-
rounding the region of instability. In Fig. 12 we further
note that even the initial transient is sufficiently strong
to “switch on” a small amount of mixing. However
this soon decays to zero and does not reappear until
the steady signal has been established in the region
Ae/2< 2 <,

8. Summary and conclusions

We have presented a very small fraction of the
numerical data which has been collected during this
initial study of the evolution and stability of finite-
amplitude mountain waves, and have concentrated the
discussion on the nonlinear effects which occur in uni-
form means flows with homogeneous stratification. In
the limit that the aspect ratio of the obstacle is small
the nonlinear numerical model is in almost exact accord
with the predictions of linear theory, even with respect
to the magnitude of certain second-order characteristics
of the flow (e.g., the surface wave drag). In this limit
the vertical profile of Reynolds stress sufficiently far
from the lower boundary is nondivergent as predicted
by the Eliassen-Palm theorem. In the lower levels the
stress profile is slightly divergent and there is therefore
a mismatch between the surface drag and the uniform
stress level in the interior. The discrepancy is such that
the wave amplitude in the interior is lower by approxi-
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TasrE 1. Comparison of wave drag on the surface to
Reynold stress in the interior.

h D,(t — =) (pu'w’'Y(t — =) Percent
(m) (kg s?) (lfg s7%) mismatch
100 3.05x10? —2.40X102 21.3
200 1.30x 103 —1.05X10? 19.2
300 3.00x 108 —240X108 20.0
400 ~1.30X10* unstable —

(no asymptote)

mately 109, than the linear predictions in the small
aspect ratio (4=1/30) case. This discrepancy is not
a strong function of aspect ratio. For A<#. (the critical
height for the onset of convective instability) the stress
profile remains nondivergent in the interior in spite of
the fact that the wave amplitude is large.

For h> h,(h,~400 m with a=3 km, 27/N =10.2 min,
Up=4 m s™!) the wave becomes convectively unstable
and the flow highly unsteady. The a posteriori sta-

bility condition
9
().
02/ max

deduced from linear theory was found to provide an
accurate estimate of %, and thus (with g fixed) of the
critical aspect ratio. This condition for the onset of
convection is equivalent to that for which an overhead
streamline first becomes vertical and has been employed
previously in explanation of the appearance of “rotors”
in the wave field (e.g., Long, 1955; Miles and Huppert,
1969; Danielson and Bleck, 1970). In the unstable
regime the wave drag on the surface increases, the
maximum strength of the downslope flow in the lee
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F1c. 10. Time development of the downslope wind amplification factor, with the time in units of At=20 s for (a) =200 m, (b) ~=2300
m, (c) #=400 m. Note the increase in the maximum tangential wind speed at the surface in the unstable regime with 2=400 m.
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F16. 11. Temporal evolution of the vertical velocity field with 2=400 m for (a) t=420 A¢, (b) t=460 A¢, (c) t=500 Af, (d) =540 Az
Note the pronounced splitting of the phase structure produced by the onset of convective mixing.

increases, and the Reynolds stress profile becomes
strongly divergent implying a strong wave-mean flow
interaction.

The implications of these results for the geophysical
problem require some further remarks. Although the
value of N which we employed is reasonable as a
measure of mean tropospheric stability, the parameters
Ui=4 m s and a=3 km are both too small. From
(42) increasing U, increases the vertical wavelength
and from (32) it also increases the wave amplitude. To
keep Fr small and the response in the internal wave
regime with U, large demands a commensurate in-
crease of the half-width a from (37). Since the ampli-
tude is proportional to %/e from (32), if condition (48)
is to be satisfied with a large then the mountain height
k must also be increased.

‘One of the main characteristics of the strong wave
events described by Lilly and Zipser (1972) is that the
vertical wavelength of the observed wave field is
roughly equal to twice the tropopause height so that
the tropopause is a distance A,/2 above the surface.
This condition has been invoked by Klemp and Lilly
(1975) in explanation of the occurrence of strong down-
slope windstorms. The tropopause is a boundary at
which strong partial wave reflections occur because of

the rapid increase of stability there. When the elevation
of this surface is A./2 there is constructive interference
between the direct and reflected waves at the surface
and thus a strong surface response. With 2r/N=10.2
min we need Uy=~25 m s to give \./2=tropopause
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Fic. 12. Development with time (in units of A¢=20 s) of the
maximum value in the domain of the momentum diffusivity K.
This maximum is obtained a distance \,/2 above the surface and
slightly to the lee of the mountain crest. Note that K5* is in-
creasing rapidly as the wave breaks (cf. Fig. 11).
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height. If we employ this value of U, to rescale our
results and take ¢=~12 km (an estimate of the half-
width of the peak generating the internal wave in the
Lilly and Zipser observations) then to satisfy the a
posteriori stability condition we require an obstacle
elevation in excess of 1 km. This is satisfied by the
topography associated with the observed wave field.
The wave may therefore be unstable a distance A,/2
above the surface. In the data described by Lilly and
Kennedy (1973) this is the height at which the magni-
tude of the Reynolds stress decreases to zero. It is also
the height at which severe turbulence was encountered
by the aircraft employed to make the in situ flux
measurements. On the basis of the results reported
here we would interpret the observations as indicating
that the wave amplitude was super-critical with respect
to the criterion for convective stability. This might
explain both the location of turbulence in the region
A:/2 above the surface and the strong divergence of
the stress profile there.

We suspect that the preceding interpretation of the
Lilly and Zipser (1972) data will require some modifica-
tion when the effects of vertical shear in the mean flow
and vertical variations of stability are taken into ac-
count. However, the main fact which our calculations
have demonstrated is not liable to be strongly modified
by the simulation of more complicated systems. The
geophysical circumstances in which a lee wave becomes
convectively unstable within the first vertical wave-
length should be rather common in the atmosphere.
When such circumstances obtain there exists an
alternative mechanism to the one advanced by Klemp
and Lilly (1975) which is potentially capable of ex-
plaining the phenomenon of strong downslope winds.

When the wave induces the superadiabatic condition
at a height ~\,/2 above the surface, this region once
established, will act as a strong reflector of incident
wave energy. The reflectivity at this height is not due,
however, to the negative lapse rate but is rather as-
sociated with the nonlinear critical layer which is
established simultaneously. Since the velocity field is
approximately solenoidal (Boussinesq approximation),
this can be seen by direct inspection of the continuity
equation

ou’ ow
__+—_=O7
ox 0z

where the total horizontal wind field is
w*=Us+u'.

Expressing »’ in terms of £ as in (31), the continuity
equation, with the assumption of no upstream in-
fluence, may then be integrated directly to give

at
u’= _— Uo—“.
0z
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Therefore the total horizontal wind is

=o(-3)
w*=U 1——),
9z

and wherever the flow is locally superadiabatic (9£/
dz>1) a critical layer also exists, i.e., there is a wind
reversal aloft. At such a local critical level the gradient
Richardson number is necessarily such the Ri<0.25.
Davis and Peltier (1976, 1977) have shown that such
a critical level has a reflectivity which exceeds unity
irrespective of whether the flow is inviscid or dissipa-
tive. When (0%/92)max>1 the nonlinear mountain
wave will amplify between its critical level and the
ground via the mechanism of multiple overreflection
(Davis and Peltier, 1976). This resonant amplification
will force a continuous growth in time of the wave drag
on the surface and a concomitant continuous increase
of the strength of the downslope wind which lnear
steady-state theory would predict. This is precisely
the interaction observed in the supercritical /=400 m
case described previously.

We are continuing to explore the consequences of
the associated wave-mean flow interaction in the con-
text of more realistic atmospheric models. Aside from
the obvious extensions of this work to include the effects
upon the mechanism of variable stratification and wind
shear the character of the flow in the vicinity of the
critical level deserves further discussion. Here we have .
elected to treat the critical layer as dissipative and have
used first-order closure to estimate the turbulent dif-
fusion which we assume to be associated with convec-
tion near the critical level. We are currently conducting
experiments in which the nonlinear interaction is com-
pletely inviscid and these experiments have demon-
strated, as expected (Davis and Peltier, 1977), that the
amplification mechanism maintains its efficiency. These
experiments will be described elsewhere.
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